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Low levels of vibration and noise in vehicles contribute to raising their perceived
value. Currently, a widely utilized approach for high frequency analysis in the
vibro–acoustics area is the Statistical Energy Analysis. An emerging new
technology is the Energy Finite Element Analysis (EFEA). The energy density
constitutes the primary variable in EFEA. The governing differential equations are
formulated with respect to the energy density. A finite element approach is
employed to solve numerically the governing equations. In order for this new
method to be applicable to automotive structures it is important to identify an
approach for modelling spot-welded joints. This paper presents the development,
implementation, and validation of a numerical process that evaluates the EFEA
power transfer coefficients that correspond to spot-welded joints. These power
transfer coefficients can be utilized in an EFEA model to simulate the behavior
of the spot-welded connections.
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1. INTRODUCTION

The vibro–acoustics attributes of a vehicle are important in its perceived value and
its competitiveness. Simulation technology is utilized for predicting and improving
these characteristics [1–6]. Currently, the simulation capabilities are based on
methods suitable for low frequencies (finite element and boundary element
methods [1–4]), and methods applicable to high frequency analysis (statistical
energy analysis) [5, 6]. The frequency range where there is a small number of waves
(usually four or five) within each component of a system is characterized as low
frequency range. Numerical methods which compute the discrete frequency and
space displacement of noise levels are suitable for analysis at low frequencies. As
the number of waves within each member increases, a larger number of elements
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is required in the finite element and boundary element numerical models to capture
the response accurately. When the frequency of excitation becomes high enough
so that the vibrational energy in all the members can be considered to be in the
reverberant field, the corresponding range is characterized as high frequency [7].
Statistical Energy Analysis (SEA) has been developed and utilized in naval,
aerospace, and automotive applications for high frequency vibro–acoustics
simulations [5–10]. The SEA is based on modelling a system as an assembly of
groups of similar modes (subsystems). The total amount of energy stored in all
the modes of a subsystem averaged over a frequency band constitutes a single
lumped parameter representing the behavior of each subsystem. The amount of
the energy stored within each subsystem, the amount of power transferred between
subsystems, and the amount of power dissipated from each subsystem, depend on
the modal density of the subsystems, their damping, and their connectivity. The
SEA solution provides information about the amount of energy stored in each
subsystem. The SEA results can be utilized to determine the path of power flow
through a system, and determine appropriate damping treatment. An emerging
method for high frequency simulations is the Energy Finite Element Analysis
(EFEA). The energy density, time averaged over a period, and space averaged over
a wavelength, consitutes the primary variable in the EFEA formulation [11–15].
A numerical solution to the EFEA governing differential equations is
accomplished by a finite element formulation [14]. The SEA formulation is derived
by viewing the vibration of a system from a modal point, and the EFEA is
developed by considering the vibration from a wave perspective. The attractive
characteristics of the EFEA are: (1) it allows ready utilization of numerical models
developed for low frequency computations; (2) it provides information for the
response on a discrete element basis rather than as a lumped parameter over an
entire subsystem; (3) it allows damping to be prescribed on a local basis on each
individual element rather than as a lumped quantity over the entire subsystem.

In EFEA, the power transferred between different components is handled by a
specialized joint formulation [14]. The power transmissibility characteristics
between members are considered to demonstrate the same behavior as semi-infinite
members with the same properties and connected in the same manner. Power
transfer coefficients (reflection and transmission coefficients) between members are
computed from the semi-infinite solutions and utilized to develop a relationship
between power flow and energy density at a joint. This relationship is utilized to
formulate the coupling between fully connected members in EFEA. In order to
expand the applicability of the EFEA into automotive applications it is critical to
be able to include spot-welded joints in an EFEA numerical model, since
spot-welding is widely utilized in the car body manufacturing process.

In the past, conventional finite element analysis was utilized to generate power
transmissibility information for members with continuous connections. Artificial
damping was imposed in all members in order to eliminate reflections from their
boundaries. Then, SEA coupling loss factors were derived based on the power
transmissibility information produced by the conventional finite element analysis
[16–20]. The work presented in this paper is based on a similar concept of
utilizing conventional finite element models to compute the coupling
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characteristics of a spot-welded joint, and then determining the corresponding
EFEA power transfer coefficients that can be employed in an EFEA model for
high frequency analysis. The following new elements are presented:

(1) Conventional finite element models of spot-welded or continuously
connected members are utilized to compute the ratio of the stored energy between
receiving and externally excited members. In this formulation there is no
requirement for artificial damping to be introduced in the system in order to
eliminate reflections from the boundaries. Thus, the energy ratio is computed
based on the total energy stored in each member. The energy ratio constitutes the
variable that characterizes the connection.

(2) An iterative algorithm is developed for computing the EFEA power transfer
coefficients for spot-welded members based on the ratio of total energy distributed
among members. The development of this specialized algorithm is necessary
because the energy ratio includes information for the power reflected from the
boundaries of each member.

(3) The new algorithms are implemented into software.
(4) The new numerical developments are utilized to analyze members connected

by a continuous joint and the EFEA results are compared to test data and results
from the literature.

(5) The new numerical developments are utilized to analyze members connected
by two different spot-welding patterns and the EFEA results are compared to test
data.

2. MATHEMATICAL FORMULATION

In order to present the current development some background information will
be given about the EFEA method, and the existing formulation for modelling
continuous joints. Although a variety of members (rods, beams, plates, acoustic
spaces) can be represented in EFEA [12–15], only the formulation associated with
the flexural degree of freedom of a plate will be discussed here. It comprises the
foundation for developing technology for modelling the spot-welded joints
between plate members.

2.1.      

The development of the governing differential equation is based on the farfield
solution for the out-of-plane deflection of a plate:

w(x, t)= (Ax e−ikxx +Bx eikxx)(Ay e−ikyy +By eikyy) eivt, (1)

where Ax , Bx , Ay , By are constants associated with the amplitudes of the
propagating wave in the positive and negative x and y direction respectively, and
kx , ky are components of the wavenumber associated with the damped frequency
of oscillation in the x and y directions. w(x, t) constitutes the far field solution for
the out of plane displacement equation for a plate:

D94w+ rh 12w/1t2 =F(x, t), (2)
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where D=Eh3/12(1− n2) is the rigidity of the plate, n is Poisson’s ratio, h is the
thickness of the plate, r is density of the plate, and F(x, t) is the external out of
plane load applied on the plate. The energy density constitutes the primary
variable in formulating the governing differential equation. The energy density
averaged over a period can be expressed in terms of the far field displacement
solution [12]:
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where * indicates complex conjugate, and � � indicates time averaging over a
period (i.e., �A�=(1/T)ft+T

t A(t) dt). The two intensity components averaged
over a period are also associated with the far field displcement solution as
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where �Ixx�, �Iyy� are the two time averaged intensity components. The far field
displacement (1), can be substituted in equations (3) and (4). By integrating the
new expressions over one wavelength, equations can be derived for the time and
space averaged energy density and intensity components �e� �, �I� xx�, �I� yy�
respectively, where � indicates space averaging over a wavelength. From these
expressions a relationship can be derived as

� I� �=−(c2
g /hv)9�e� �, (5)

where h is the hysterisis damping factor, and cg the group speed defined as (see
reference [21])

cg =dv/dk=2[v2D/rh]1/4, (6)
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where v is the frequency in rad/s. The time and space averaged dissipated power
�P� diss� can be related to the corresponding energy density as (reference [16])

�P� diss�= hv�e� �. (7)

By considering an energy balance results in (from references [12, 13])

�P� in�= �P� diss�+9� I� �, (8)

where �P� in� corresponds to the input power. Then substituting equations (5) and
(7) into equation (8), results in the governing differential equation for the time and
space averaged energy density:

− (c2
g /hv)92�e� �+ hv�e� �= �P� in�. (9)

This constitutes the governing differential equation for the EFEA. A finite element
approach [14, 15] is employed for solving it numerically.

2.2.   

The element matrices are derived from the weak variational form of
equation (9):

−gCe
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where f is an arbitrary function, Ce is the boundary of the element, Se is the surface
of the element, and n̂ is the unit vector normal to the element boundary. By
utilizing shape functions within each element, and representing all variables as a
linear superposition of the shape functions and the nodal values, a system of linear
equations can be produced:

[Ke]{ee}= {Fe}+ {Qe}, (11)

where {ee} is the vector of nodal values for the time and space averaged energy
density for a finite element, [Ke] is the system matrix for each finite element, {Fe}
is the excitation vector representing the energy input at each node of the finite
element, and {Qe} is the power flow across the element boundary. Representative
terms for the matrix and the excitation vectors can be written as

Ke
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where Ni are shape functions, and � I� � is the time and space averaged intensity
at the boundary of the element. In order to derive the Qe

i terms, the relationship
between energy density and intensity (equation (5)) is employed. Using equation
(5), the power flow at the boundary of an element can be expressed in terms of
the nodal values of the energy density at the same location. Qe

i provides the
mechanism for connecting elements together across discontinuities. At the joint
locations the energy density is discontinuous, and coupling is achieved through
continuity of power flow.

2.3.   

In the conventional finite element formulations the continuity of the primary
variables of the analysis at the nodes between elements is utilized in order to
assemble the global system matrix. In the EFEA the continuity condition
applies to the energy density only when geometry and material properties do not
change. At positions where different members are connected, or at locations of
discontinuities within a single member, the energy density is discontinuous.
The corresponding boundary between the elements defines a joint location. A
specialized approach is developed in order to formulate the connection between
the discontinuous primary variables at the joints. The continuity of power
flow across a joint and the corresponding equations are employed in the
development. The vector {Qe} is derived as a product of a matrix representing the
power flow mechanism across the joint ([ETi

j ]) and the nodal values of the energy
density [14].

In order to derive the power transfer coefficients and sequentially formulate the
entries of the power transfer matrix [ETi

j ], the connected members are considered
semi-infinite and fully attached to each other [21]. The connection is considered
massless, rigid (does not change in shape), without power loss, and infinite in
length. These assumptions in the formulation of the joints are valid for the high
frequency range which is consistent with the overall EFEA formulation since only
the far field displacement solutions are utilized in deriving expressions for the
energy density and the intensity (equations (3) and (4)). The equations relating the
nodal values of the power flow and the nodal values of the energy density can be
written as (see reference [14])
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where n and (n+1) indicate the two nodes of the ith element at the joint, and
m, (m+1) indicate the two nodes of the jth element at the joint, and [ETi

j ] is a
matrix representing the power transfer mechanism. The power transfer coefficients
are utilized to calculate the terms of matrix [ETi

j ]. The power transfer coefficients
are computed from analytical solutions of semi-infinite members fully connected
to each other, and by taking into account the continuity of the power flow across
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the joint. By taking into account equation (13) the finite element equations for
elements i and j (equation (11)) result in

$$[Kei]
[Kej]%+[CETi

j ]%6ei

ej7=6f i

f j7, (14)

where [Kei], [Kej] are the element matrices for the ith and jth element, {ej}, {ej} are
vectors containing all the nodal degrees of freedom for elements i, j respectively,
and [CETi

j ] is a coupling matrix consisting of the coefficients of [ETi
j ] positioned

in the appropriate locations.

2.4.       - 

Due to the discontinuous nature of a spot-welded connection the current
analytical approach of determining the power transfer coefficients and deriving the
entries of the coupling matrices at the joints is not applicable. A concept of
employing conventional finite element models to calculate the energy in structural
members, and then utilizing the energy ratio between members to calculate SEA
coupling loss factors has been developed in the past [16–20]. Specifically, SEA
coupling loss factors have been computed through finite element calculations for
the following cases: (1) assemblies of fully connected plates [16, 17], (2) beam
junctions [19], (3) interfaces between structural and acoustic subsystems [18], (4)
capturing the resonant characteristics of coupled subsystems [20].

It has been observed that in high frequencies a conventional finite element model
cannot compute, in a reliable manner, the vibration at some specific point and for
some specific frequency. However, if the results are averaged over the surface of
each structural member and over a frequency band, then the values for the energy
ratio between members are reliable [16, 17]. It has also been indicated that
approximately six wave lengths are required for the finite element computations
to provide reliable energy ratio data [16]. The averaged energy data computed by
the finite element method are reliable because although the natural frequency
might be shifted in the high frequency range, the shapes of the normal modes are
still captured. Therefore, the frequency and space averaged finite element results
are reliable [16, 17]. In all the previous work where conventional finite element
models were utilized to compute SEA coupling loss factors, artificial damping was
introduced in the FEA model to eliminate reflections from the boundaries
[16, 17, 19]. Thus, the finite element model with the artificial damping
approximates an assembly of semi-infinite members. The reason for relying on
conventional finite element analysis to extract the characteristics of the power
transfer for a SEA analysis, is the flexibility of the finite element method in
modelling complex connections which cannot be accounted by analytical
solutions.

A similar overall approach is employed in the work presented in this paper. The
conventional finite element method is utilized to compute power transfer
characteristics for spot-welded connections. No artificial damping is introduced in
the finite element models in this case. Instead, a numerical iterative algorithm is
developed that processes the data computed by the finite element analysis, and
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calculates the power transfer coefficients that can represent the spot-welded
connections in high frequency EFEA models. The task of formulating the
spot-welded joints in EFEA is divided into two steps. First, a finite element model
is constructed to characterize the power transfer mechanism associated with a
particular spot-welding connection. Members connected by the spot-welding
pattern that is analyzed are modelled with finite elements. A forced frequency
response analysis is performed over several frequencies within each frequency band
where the power transfer characteristics are to be computed. The ratio of the
frequency averaged kinetic energy between the members is utilized to characterize
the power transfer mechanism of the particular spot-welding connection. Then, the
ratio of the kinetic energies is processed by an iterative algorithm and the
corresponding EFEA power transfer coefficients are computed. Finally, the entries
of the power transfer matrix [ETi

j ] are calculated from the power transfer
coefficients. The outlined process and the corresponding software that performs
the computation of the power transfer coefficients are general and can handle any
type of spot-welded connection. The process must be repeated for every different
spot-welding pattern that is being modelled, because the ratio of the kinetic
energies computed by the finite element analysis is expected to change depending
on the characteristics of each spot-welded connection.

The general purpose finite element code NASTRAN [22] is utilized for the finite
element analysis. A finite element model for the spot-welded connection and the
corresponding members must be created. A direct frequency response solution
must be performed at every frequency of analysis. The direct analysis relaxes the
requirement of six elements per wavelength, since the normal modes are not
computed explicitly. The complete mass, stiffness, and damping matrices are
employed in the direct solution, therefore no errors from modal truncation are
introduced in the analysis. The EFEA approach is applicable for simulations in
the high frequency range, and for automotive applications the targeted range of
applicability is between 800–2500 Hz. Therefore, the computations are
concentrated in the 1/3 octave frequency bands between 800 Hz and 2500 Hz. The
finite element direct frequency response analysis can be performed at 2·5 Hz
increments for the frequency bands with center frequencies at 800 Hz, 1000 and
1250 Hz, and at increments of 5 Hz for the bands with center frequencies at 1600,
2000 and 2500 Hz. The analyses for each band are performed separately. The finite
element results for the vibration velocities are contained in a NASTRAN ‘‘.pch’’
file format. A computer code is developed for processing the finite element results
and generating information for the ratio of the kinetic energy between the
receiving and the excited members. The computational process is outlined in
Figure 1. The algorithm and the software are general enough that there are no
restrictions on the type of structural connections (spot-welded or continuous
connection) or number of members to be processed. A characteristic zone is
defined over each member of the finite element model and it can contain the entire
member or a section of it. Computations are performed over each characteristic
zone to calculate the amount of kinetic energy present within it. The ratio of energy
between zones associated with different members is utilized to represent the power
transfer characteristics of the connection. A separate file in NASTRAN format
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Figure 1. Numerical process for computing the energy ratio between a receiving and an excited
member.

is required to define each zone of the finite element model over which the kinetic
energy will be computed for each excited or receiving member. The zone over
which the energy will be computed can be comprised by either the entire member,
or a characteristic section of the member. From the data defining each zone the
area and the material properties (thickness and density) are determined. The
normal velocity is first computed over each finite element that belongs to a
characteristic zone as

nnE =gSE

n� n̂ dA>gSE

dA, (15)

where subscript E indicates an element quantity, n� is the complex structural
velocity, n̂ is the unit normal over the element, nnE is the value of normal velocity
for each element, and SE is the element surface. Then, the kinetic energy over the
surface of each representative zone of every member is computed for each
frequency of analysis as

KEZm = 1
2 gSZm

rmtmn2
nEm

dA, (16)

where KEZm is the kinetic energy stored in the zone representing the mth member,
SZm is the associated surface, rm is the material density and tm is the local thickness
of the member. The results for all the frequencies in each frequency band are
averaged for each member by taking their summation resulting in afiKEZm . The
latter represents the energy stored within the representative zone of the mth
member for the 1/3 octave band with center frequency fi . Finally, the energy ratio
is computed as

(ER)l
m = s

fi

KEZl>s
fi

KEZm , (17)

where (ER)l
m is the energy ratio between the lth and the mth structural

components. All the energy ratios are generated between the excited (mth) and the
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receiving (lth) members. The benefit of this averaging technique is that it can
account for local characteristics of the connection between the structural members.
The local characteristics are captured because a conventional finite element model
is utilized to represent the connection and the members. The energy ratios between
members of the spot-welded connection are utilized to compute the EFEA power
transfer coefficients, and generate the power joint matrices of the EFEA
formulation.

2.5.          



In previous work when the energy ratio computed by a finite element analysis
was processed to evaluate SEA coupling loss factors between plates, a simple
relationship was utilized [references 16, 17]:

hjk =(cgjL/2h2fAj)t, (18)

where hjk is the coupling loss factor between subsystems j and k, cgj is the group
speed in the excited member, L is the length of the junctions between the plates,
Aj is the area of the excited plate, f is the frequency where the coupling loss factor
is computed, t is the energy ratio between receiving and excited member and h

is the damping coefficient for the excited system. Equation (18) is a formula
utilized primarily in computing the coupling loss factor from measured energy
ratios. The set up which is utilized to compute the energy ratio t of equation (18)
must contain sufficient damping applied at the edges of the receiving members in
order to avoid reflections from the boundaries. The damping must be introduced
artificially on the receiving members by applying viscoelastic treatment at their
boundaries [16]. The artificial damping requirement increases the complexity of the
set up and introduces uncertainty. In this work artificial damping is not imposed
on any members, and thus the set up remains simple. The energy in each member
corresponds to a reverberant field since the reflections from the boundaries are not
damped. Instead, an iterative algorithm is created in order to compute the EFEA
power transfer coefficients from results obtained from the finite element models
without artificial damping. The development of the iterative algorithm is preferred
rather than attempting to introduce artificial damping in the finite element model
for two reasons:

(1) The modelling becomes simpler and uncertainties associated with imposing
artificial damping are eliminated.

(2) The iterative algorithm can be utilized to extract EFEA power coefficients
regardless of whether the energy ratio information is produced by a finite element
analysis or from actual testing. In case that the energy ratio is produced by a test,
the iterative algorithm eliminates the requirement for artificial damping and
simplifies significantly the test set up.

Due to the presence of reflections from the boundaries of the members, there
are four mechanisms responsible for the energy stored within the excited member;
input power, power reflected back from the joint, power reflected from the
boundaries and power transmitted from the receiving member back to the excited
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one due to the small amount of damping present in the receiving member. In the
receiving member there are three mechanisms associated with the stored energy;
power transmitted from the excited member, power reflected from the boundaries,
and power reflected back from the joint.

For a spot-welded joint both the reflection and the transmission (power transfer)
coefficients will change from the original values corresponding to a fully connected
joint of similar characteristics. The new values should be such that the EFEA
solution results in the same amount of reverberant energy stored within each
component as either is evaluated by the averaging finite element approach or
possibly measured through testing. From reciprocity considerations the entries
associated with the power transfer coefficients of the flexural waves contained in
matrix [CETi

j ] (equation (14)) can be expressed in terms of the transmission tij and
the reflection rii coefficients. By concentrating on the power transfer coefficients
associated only with the energy of flexural waves, the summation of tij + rii remains
constant between fully connected and spot-welded joints of similar structural
characteristics. Therefore, the two coefficients can be reduced to one unknown
constant r. The system of the EFEA equations for the members connected at the
joint can be written as

$$Kl

Km%+[CJl
m (r)%6 el

em7=6 fl

fm7c [SK(r)]6 el

em7=6 fl

fm7c 6 el (r)
em (r)7 , (19)

where subscripts l, m indicate the lth and mth members respectively, [SK(r)] is the
system matrix including the joint matrices, represented as a function of the
unknown power transfer constant. From processing the results of the finite
element analysis the energy ratio (ER)l

m between the lth receiving member and mth
excited member is computed. The equivalent expression from the EFEA
formulation can be expressed as a function of the unknown power transfer
coefficient r as

ERl
m (r)= s

L

j=1

elj (r)Sljtlj>s
M

i=1

emi (r)Smitmi , (20)

where M and L are the total number of elements in the mth and lth members
respectively, tmi , tlj are the thicknesses associated with the ith element of the mth
member and the jth element of the lth member, respectively, emi , elj are the energy
densities associated with the ith element of the mth member and the jth element
of the lth member, respectively, and Smi , Slj are the corresponding element areas.
Combining equations (17) and (20) results in

ERl
m (r)= (ER)l

m . (21)

An iterative approach is utilized for obtaining solutions to this equation [24].
The EFEA power transfer coefficients representing the spot-welded connections
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Figure 2. Test set up. All dimensions in inches.

are computed from the iterative solution. The algorithm is based on the
equation

ERl
m (r)(n+1) − (ER)l

m

ERl
m (r)(n+1) −ERl

m (r)(n) =
r(n+1) − r
r(n+1) − r(n)c r

= r(n+1) − [r(n+1) − r(n)]
ERl

m (r)(n+1) − (ER)l
m

ERl
m (r)(n+1) −ERl

m (r)(n) , (22)

where superscripts n, (n+1) represent the consecutive iteration steps. The original
values of the power transfer coefficients of a continuous joint with similar
structural properties are utilized in defining the initial value for coefficient r (i.e.
r(1)). A value modified by a 10% change can be employed in defining the complete
set of initial conditions (i.e., r(2) = 1·1r(1)). Equations (19) and (20) are utilized for
computing the values of ERl

m (r) for each increment. The algorithm is considered
to converge when the difference

(ERl
m (r)− (ER)l

m )/(ER)l
m QUL (23)

is smaller than a user defined limit UL. The iterative algorithm is independent
whether the targeted value (ER)l

m is specified by a finite element direct frequency
response analysis or by testing. The development of the iterative process simplifies
both the finite element model and the test set up that can be utilized to evaluate
the ratio of energies between receiving and excited members, since it eliminates the
requirement of artificial damping.

3. VALIDATION, APPLICATIONS

Three pairs of plates are constructed and tested in order to validate this
development. The energy ratio between receiving and excited plates is computed
first by conventional FEA methods, and the averaging algorithms and software
developed in this work. The energy ratio is utilized by the developed iterative
algorithm to compute the corresponding EFEA power transfer coefficients. The
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latter are introduced into an EFEA model and the energy ratio between the
receiving and the excited member are computed by an EFEA analysis and
compared to test data. The dimensions of the plates, the measurement areas, and
the location where the excitation is applied are presented in the Figure 2. The
plates are constructed from low carbon steel, 0·03 in. thick having 0·25%
structural damping. The dimensions are selected to be uneven in order to create
a diffused field in both members. In an actual structure the diffused field will be
created by the irregularities at the boundaries of the individual members. The three
assemblies have fully welded, spot-welded at 2 in. intervals, and spot-welded at
4 in. intervals, joint connections. Although the primary interest is in modelling the
spot-welded connections, a pair of fully connected plates is also tested and
analyzed since results for plates connected at a right angle are available in the
literature [17, 25–27]. Correlation between the trends in the test data and numerical
results produced in this work and published data for the fully connected plates
establishes confidence in the experimental and analytical results presented in this
paper. In addition it demonstrates that the developed approach can compute with
increased accuracy the power transfer coefficients for fully connected members
over the analytical approach that utilizes solutions for semi-infinite members.
During testing each plate assembly is suspended by flexible cords in order to
present free boundary conditions at all edges. Two measurement areas, one for
each plate (Figure 2), are scanned with a laser vibrometer. Measurements are
collected at 100 points for each measurement area. The measurements are
processed by adding the squares of the velocities over each area, and then taking
a summation over frequencies for each 1/3 octave frequency band. Since the
thickness for both plates is the same, the mass corresponding to each measurement
section can be determined from the corresponding area. The ratio of the kinetic
energies between the two measurement areas of the two plates is computed for each
frequency band as

0s
I

i=1

s
100

n=1

A1nn
2
1ni1>0s

I

i=1

s
100

n=1

A2nn
2
2ni1, (24)

where A1n , A2n are the areas corresponding to each measurement point of the
receiving and the excited plate respectively, n1ni , n2ni are the measured velocities at
the nth point of the receiving and the excited plate respectively, and I is the total
number of frequencies within each 1/3 octave band. Test data are collected at
2·5 Hz increments for the 1/3 octave bands with center frequencies at 800, 1000
and 1250 Hz and at 3·125 Hz increments for the bands with center frequencies at
1600 Hz, 2000 Hz and 2500 Hz. The energy ratio between the receiving and the
excited plates is computed from the test data for the six 1/3 octave frequency
bands. In the numerical process presented in this paper the first step is associated
with constructing a finite element model for the connection which is being
characterized, and utilizing it to compute the power transfer characteristics of each
joint. Specifically, the ratio of the total energy stored in the receiving and the
excited plate is computed and used as a measurable of the power transfer
mechanism. Then, the information for the energy ratio is utilized in the iterative
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process to calculate the EFEA power transfer coefficients that represent the
particular connection. Finally, the power transfer coefficients are introduced in the
EFEA model. The EFEA computations are performed, and the numerical results
are compared to the test data. Once the EFEA power transfer coefficients for a
particular connection have been computed, they can be utilized in any EFEA
model containing the particular connection.

A finite element model is constructed for each plate connection. Based on the
material properties for steel and a thickness equal to 0·03 in. the bending
wavelength for an infinite plate can be computed as [16]

l= cB /f= 4zD/rhzv/f, (25)

where cB is the phase velocity, D=Eh3/12(1− n2) is the rigidity of the plate, h is
the plate thickness, v is the frequency in rad/s and f is the corresponding
frequency. For the properties of the fixture utilized in the test, the wavelength at
2500 Hz is 2·08 in. The finite element model is constructed with an average element
dimension equal to 0·4 in. It results in approximately five elements per wavelength
at 2500 Hz which is just less than the minimum requirement of six elements per
wavelength indicated in reference [17]. This is considered sufficient though since
a direct frequency response analysis is performed to compute the structural
vibration rather than a modal frequency response [17, 18]. The direct frequency
response is expected to relax the requirement on the number of elements per
wavelength since it eliminates any errors from modal truncation. The finite element
model is depicted in Figure 3. The spot-welding is modelled with displacement and
rotational constraints imposed at the nodes corresponding to the locations of the

Figure 3. Finite element model for the plate assembly.
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Figure 4. Comparison between test data (––), updated EFEA results (- - -), and baseline EFEA
computations (. . . .).

spot-welds. This modelling approach is utilized currently in the low frequency
finite element car body models. The averaging algorithm described in section 2.4
is applied to the finite element results. The energy ratio between the receiving and
the excited plate is computed. The iterative approach (section 2.5) is employed for
evaluating the EFEA power transfer coefficients. The following data are presented:

(1) Test data and numerical results for a set of fully connected plates. Although
the work presented in this paper is targeting issues associated with spot-welded
connections, the developed approach is also applicable to fully connected joints.
Results for fully connected plates over an extended frequency range (250–2500 Hz)
are presented. The trends observed in the results presented in this paper for the
fully connected plates compare well with trends of other results available in the
literature for similar arrangements of fully connected plates [17, 25–27].

(2) Test data and numerical results for the fully connected and the two sets of
spot-welded plates in the high frequency range (800–2500 Hz). These results allow
one to validate the developed technology for modelling partially connected
members, and compare the behavior of fully connected and spot-welded joints.

3.1.   

A direct finite element frequency response analysis is performed for
characterizing the connection between the two plates. The approach presented in
section 2·4 is utilized to generate information about the expected energy ratio
between the receiving and excited plate. The corresponding EFEA power transfer
coefficients are computed through the developed iterative process (section 2·5) and
utilized in an EFEA analysis [28]. The original EFEA formulation is also utilized
for computations based on power transfer coefficients calculated from analytical
solutions of continuously connected semi-infinite members. Results for the energy
ratio between the receiving and the excited member are presented in Figure 4. The
three curves correspond to test data, EFEA results based on modified power
transfer coefficients, and conventional EFEA results based on power transfer
coefficients computed by analytical solutions. The following can be observed:

(1) The EFEA analysis that utilizes power transfer coefficients computed by
analytical solutions, produces results for the energy ratio between the receiving and
the excited plate that decay smoothly with increasing frequency. The observed
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Figure 5. Test data (––), original EFEA solution (. . . .), and modified EFEA solution (- - - -) for
fully welded plates.

trend in the results is in agreement with published data for similar configurations
computed either by SEA [17, 25, 26] or by EFEA [27].

(2) The energy ratio from test data presents fluctuations with respect to the
frequency. Similar behavior can be observed in test or analytical results presented
previously for similar assemblies [17, 25–27].

(3) The results from the EFEA analysis that utilizes the modified power transfer
coefficients computed by the developed algorithm demonstrate good agreement
with the test data. Both the magnitude and the shape of the response curve are
captured correctly.

(4) The difference between the EFEA results that utilize power transfer
coefficients computed by analytical methods, and the EFEA results that utilize
power transfer coefficients computed by the developed methodology is more
pronounced at frequencies below 1000 Hz. The latter approach demonstrates good
agreement with the test data below 1000 Hz. Therefore, even for continuous
connections the power transfer coefficients computed by the developed algorithms
seem to improve the accuracy of the EFEA computations.

(5) An analytical solution and SEA results are available in the literature for a
similar plate assembly (Figure 6 in reference [25]). Specifically, an exact
mathematical solution was developed and a SEA analysis was performed for the
vibrations of two thin plates connected at a right angle. The analytical solution
presents the same fluctuating behavior with the test data and the EFEA results
that utilize the power transfer coefficients computed by the developed method
(Figure 4). The SEA results present a smoothly decaying behavior with frequency

Figure 6. Test data (––), original EFEA solution (. . . .), and modified EFEA solution (- - -) for
spot-welded plates at 2 in increments.
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Figure 7. Test data (––), original EFEA solution (. . . .), and modified EFEA solution (- - - -) for
spot-welded plates at 4 in. increments.

similar to the EFEA results that utilize power transfer coefficients computed by
analytical solutions of semi-infinite members (Figure 4).

3.2.    - 

The test and numerical results for the three sets of plates are presented in
Figures 5–7 for the 1/3 octave bands in the frequency range 800–2500 Hz. The
results are presented in terms of the energy ratio between the receiving and the
excited plate. Three curves are present in each figure corresponding to: (1) testing;
(2) the EFEA analysis that utilizes the power transfer coefficients computed by the
developed method (modified EFEA); (3) the EFEA analysis that utilizes power
transfer coefficients computed analytically from semi-infinite fully connected
members (original EFEA). The following observations are made:

(1) In both test and numerical results from the modified EFEA the fully welded
pair of plates demonstrates a more even energy transfer over the entire frequency
range.

(2) Both sets of spot welded plates demonstrate decaying energy transfer at
higher frequencies. This behavior is captured correctly by the modified EFEA
analysis.

(3) Magnitudes of the energy ratio correlate well between test and modified
EFEA analysis.

(4) The test data and the modified EFEA results present a similar fluctuating
behavior and close correlation, while the original EFEA results demonstrate a
smoothly decaying with frequency behavior.

(5) The behavior of the fully welded plates demonstrates increasing energy ratio
between the 2000 and 2500 Hz bands. This characteristic is captured correctly by
the modified EFEA analysis.

(6) In both test and modified EFEA analysis the spot welded plates present
higher energy ratio than the corresponding fully welded pair at some of the lower
frequency bands.

The results of the modified EFEA analysis utilize power transfer coefficients
computed by the algorithms presented in this paper. Table 1 summarizes the values
of the power transfer coefficients computed by this development for the three sets
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T 1

Summary of transmission (t) and reflection (r) coefficients between baseline EFEA
and modified EFEA solutions

Modified Modified Modified
Baseline continuous 2 in. spot-weld 4 in. spot-weld

ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV
Frequency r t r t r t r t

800 0·665 0·332 0·8 0·2 0·6 0·4 0·575 0·425
1000 0·665 0·322 0·64 0·36 0·655 0·345 0·8 0·2
1250 0·666 0·334 0·72 0·28 0·69 0·31 0·68 0·32
1600 0·666 0·334 0·76 0·24 0·69 0·31 0·78 0·22
2000 0·665 0·329 0·732 0·267 0·73 0·27 0·75 0·25
2500 0·665 0·329 0·53 0·48 0·76 0·24 0·83 0·17

of plates, and the power transfer coefficients computed by analytical solutions of
fully connected semi-infinite members. As expected in cases where the targeted
energy ratio is lower than the one predicted by the baseline EFEA, the reflection
coefficient becomes higher and the transmission coefficient lower. The opposite
behavior is observed in the power transfer coefficients when the targeted energy
ratio is higher than the baseline. The power transfer coefficients computed for the
spot-welded connections are specifically related to the particular spot-welding
patterns utilized in this work. The developed algorithm is general and it can be
utilized to compute the power transfer coefficients of any spot-welded connection.
The power transfer coefficients can be inserted in any EFEA model that includes
the corresponding spot-welded connection. The approach developed in this paper
does not require to create a non-reflective boundary for any member and thus, it
simplifies the testing process for evaluating the energy ratio between receiving and
excited member.

4. CONCLUSIONS

An approach has been developed for modelling spot-welded joints in an Energy
Finite Element Formulation. It is based on computing power transfer coefficients
that reflect the non-continuous nature of the connection. First the energy ratio
between a receiving and the excited member is computed from an averaging
algorithm and results from conventional FEA analysis. Then the energy ratio
information is utilized by an iterative algorithm for evaluating the power transfer
coefficients that will make the EFEA model demonstrate a similar energy transfer
behavior. The targeted energy ratio between the receiving and excited member may
also become available from test data instead of being computed by the averaging
algorithm and conventional FEA. In this development there are no requirements
to impose artificial damping on any member in order to avoid reflections from the
boundaries. The iterative algorithm that computes the power transfer coefficients
can accommodate the presence of the reflections from the boundaries. Therefore,
a test set up or a conventional FEA model can be simplified. Then the power
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transfer coefficients can be computed to capture the prescribed behavior and be
utilized by an EFEA model. Three sets of plates are analyzed and tested. Their
members are fully connected, spot-welded at 2 in. intervals, and spot-welded at
4 in. intervals. There is good agreement between the test data and results from the
developed numerical methodology. The developed approach can be utilized to
model non-continuous connections in EFEA or it can be employed to compute
power transfer coefficients of fully connected members with increased accuracy.
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